Geometric aspects of high-order eigenvalue problems I. Structures on spaces of boundary conditions

نویسندگان

  • Xifang Cao
  • Hongyou Wu
چکیده

We consider some geometric aspects of regular eigenvalue problems of an arbitrary order. First, we clarify a natural geometric structure on the space of boundary conditions. This structure is the base for studying the dependence of eigenvalues on the boundary condition involved, and reveals new properties of these eigenvalues. Then, we solve the selfadjointness condition explicitly and obtain a manifold structure on the space of selfadjoint boundary conditions and several other consequences. Moreover, we give complete characterizations of several subsets of boundary conditions such as the set of all complex boundary conditions having a given complex number as an eigenvalue, and describe some of them topologically. The shapes of some of these subsets are shown to be independent of the quasidifferential equation in question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Aspects of Sturm-Liouville Problems I. Structures on Spaces of Boundary Conditions

We consider some geometric aspects of regular Sturm-Liouville problems. First, we clarify a natural geometric structure on the space of boundary conditions. This structure is the base for studying the dependence of Sturm-Liouville eigenvalues on the boundary condition, and reveals many new properties of these eigenvalues. In particular, the eigenvalues for separated boundary conditions and thos...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

On Finite Element Methods for 2nd Order (semi–)periodic Eigenvalue Problems

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R, with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004